Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

GC-MS analysis of essential oil from Anethum graveolens L (dill) seeds extracted by supercritical carbon dioxide

Hongbo Li1-3, Wei Zhou3, Yongshuai Hu4, Haizhen Mo3, Jinshui Wang1, Liangbin Hu3

1College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001; 2Postdoctoral Research Base; 3School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003; 4College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450001, China.

For correspondence:-  Liangbin Hu   Email: lihongbo@hist.edu.cn

Accepted: 23 May 2019        Published: 30 June 2019

Citation: Li H, Zhou W, Hu Y, Mo H, Wang J, Hu L. GC-MS analysis of essential oil from Anethum graveolens L (dill) seeds extracted by supercritical carbon dioxide. Trop J Pharm Res 2019; 18(6):1291-1296 doi: 10.4314/tjpr.v18i6.21

© 2019 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To conduct gas chromatography-mass spectrometric (GC-MS) analysis of the chemical compositions of dill seed essential oil (DSEO) obtained by supercritical CO2.
Methods: The impact on extraction yield were examined by single factor test, the particle size of dill seed, extraction temperature, time, pressure, as well as CO2 flux. The best extraction conditions were obtained by an orthogonal test. The chemical configurations of essential oil were examined by GC-MS analysis.
Results: The optimal extraction conditions included an extraction time of 120 min, particle size of 60 mesh, CO2 flow of 25 L/h, temperature of 40 oC, and pressure of 20 MPa. Under these conditions, the yield of essential oil was 6.7 %. Out of 38 recognized compounds, the main ones were D-carvone (40.36 %), D-limonene (19.31 %), apiol (17.50 %), α-pinene (6.43 %), 9-octadecenoic acid (9.00 %) as well as 9,12-octadecadienoic acid (2.44 %).
Conclusion: A total of 38 constituents of the essential oil obtained by supercritical CO2 were identified. The findings may provide a theoretical basis for comprehensive utilization of dill seed essential oil (DSEO) from China.

Keywords: Dill seeds, Essential oil, Supercritical CO2 extraction, D-Carvone, D-Limonene, Apiol, ^5;-Pinene, 9-Octadecenoic acid

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates